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Abstract. Trails and silhouettes (polymers with loops) are generated using exact enumer- 
ation on a face-centred cubic lattice. By assigning a tunable fugacity factor with each 
intersection it is observed that, as the fugacity for intersections is increased the trail and 
silhouette configurations change from swollen to compact ones, indicating the existence 
of tricritical points. Strong divergence of the specific heats for different path lengths is 
used to locate these tricritical points. The Dlog Pad6 scheme is used to compute the 
corresponding tricritical exponents in the limit of large path lengths. The tricritical 
exponents thus obtained show that these tricritical points are distinct from the usual 0 
point, and that trails and silhouettes do not belong to the SAW universality class. The 
tricritical exponents further show that trails and silhouettes do not belong to the same 
universality class. 

Persistency arising from fixing the initial step is also investigated and it is found that 
odd moments of the persistency obey a power law that can be expressed in terms of the 
critical exponent, U, and the path length, 1. 

1. Introduction 

Lattice trails are a polymer chain model introduced by Malakis [ 11. (For an excellent 
analytical work on trails on a Bethe lattice see [2].) The model interpolates in a 
non-trivial way between two problems in statistical mechanics: self-avoiding walks 
(SAW) and random walks (RW).  Just like SAW double occupancy of bonds is forbidden, 
but in contrast to SAW (and like R W )  self-intersections are allowed in trails. The former 
property leads to the excluded-volume effect and trail configurations tend to remain 
in a swollen phase. However, if an interaction energy E = - 1 ~ 1  (or a fugacity factor 
f =  exp(-E/k,T) = exp 0 )  is introduced with each attractive self-intersection, the rela- 
tive number of intersections may be controlled. 

In the limit of t9 + -00, intersections are suppressed and the usual SAW configurations 
are recovered whereas in the limit of t9 +CO, configurations with the maximal number 
of intersections will dominate. Intermediate between these limits is a regime of interest: 
t9 = 0 (corresponding to no interaction energy or T = CO). It was first found by Malakis 
[ l ]  that trails at T = m  belong to the SAW universality class. Subsequent extensive 
enumerations on triangular and other lattices were performed and analysed by 
Guttmann [3]. These results further support the claim that trails at T = m  belong to 
the SAW universality class [4]. 
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However, as the temperature is lowered (or 8 is increased), the interplay between 
the excluded-volume and the self-intersecting effects may lead to a collapse transition 
from a swollen to a compact phase. Such a collapse transition is very reminiscent of 
the Flory 0 point of linear polymers in poor solvent [5]  and of the 0 point of 
self-attracting SAW [6-161. All such transitions are expected to be described by tricritical 
points in the terminology of critical phenomena [6,16, 171. But hitherto, only this 
tricritical 0 point has attracted a lot of attention. In 3~ this 0 point is Gaussian up 
to logarithmic corrections [8, 18-21]. The tricritical point associated with trails, 
however, has no renormalisation group fixed point associated with it in E = 4 - d  
dimensions. Instead, the renormalisation group approach shows that the only stable 
fixed point is that of SAW [22]. This is unphysical because a tricritical point is always 
expected between a swollen and a collapse phase [22, 231. Indeed, as has been shown 
by earlier enumerations [22,24], the tricritical behaviour oftrails in 3 D  are non-Gaussian 
( v , # i ,  -yt# 1) at the tricritical point. This constitutes a motivation for studying the 
tricriticality of such a model which, as emphasised above, is inaccessible by renormalisa- 
tion group analysis, using a numerical approach. The existing data at this tricritical 
point are from exact enumeration on a loose-packed simple cubic lattice [22]. These 
results suffer from the superimposed oscillations due to the interference of the ‘anti- 
ferromagnetic singularity’. It is therefore of interest to pursue this study further by 
exact enumeration of trails on a face-centred cubic lattice which is close-packed and 
does not have these odd-even oscillations. 

In a problem related to the trail problem, only silhouettes or shadows of trails are 
considered. This model is interesting for it possesses tricritical exponents which are 
different from their trail counterparts [25]. It is also believed that such a model may 
mimic behaviours of polymers with loops [25-271. It is important to note that sihouettes, 
unlike trails, have a renormalisation group fixed point of order & in E = 4 -  d 
dimensions [23]. It is also instructive to compare the tricritical point of silhouettes 
with that of the usual Flory 0 point or the 0 point of SAW with non-bonded nearest- 
neighbour interactions [5-161. The upper critical dimension of the @ point is d , = 3  
and the configurations are Gaussian up to logarithmic corrections [6, 8, 12, 14, 18-21, 
281. The tricritical point of silhouettes, on the other hand, has an upper critical 
dimension d, = 4 and the 3~ configurations are predicted to be non-Gaussian in a 6 
expansion up to second order ( E )  [23, 291. Perhaps the most striking fact about these 
results is the unusual deviations from the mean-field exponents to yt< 1 and v t < f  at 
the tricritical point in 3~ [29]. 

The study of the tricritical behaviours of the trail and silhouette models will 
constitute the main subject of this paper. By enumerating the trails and their silhouettes 
on a close-packed face-centred cubic lattice, we hope to provide possible further 
support for earlier claims that trails and silhouettes belong to universality classes 
different from that of the SAW universality class [22, 251. But due to the exponential 
growth in the possible number of configurations we are only able to enumerate up to 
a chain length of 10. This paper is organised as follows: in the next section we take 
a cursory look at the model and differentiate a trail from its silhouette. We also define 
all the notations used and the various physical quantities we will study in the same 
section. Subsection 3.1 presents the results from the enumerations on trails and the 
results of the analysis are given in § 3.2. Subsection 3.3 deals with persistency arising 
from fixing the first step. Comparisons with results from self-attracting SAW are also 
given in § 3.2. The corresponding subsections for silhouettes are given in 0 4 and 
comparisons of trail and silhouette tricritical exponents are also briefly discussed. The 
last section, 5 5 ,  is devoted to conclusions and discussions. 
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2. Definitions and symbols 

2.1. Trails [ l ]  

Trails consist of all configurations of walkers on a lattice which are free to intersect 
their own path through an already visited site, but are not allowed to go more than 
once along the same bond. They are directional, as shown in figure l ( a ) .  In the 
terminology of critical phenomena [6], site intersection is an irrelevant perturbation 
and the trail model belongs to the SAW universality class described by the O ( n )  spin 
model in the limit n + 0 [30]. Lucid field-theoretical expositions may be found in [23] 
and references therein and we shall not reproduce the proofs of the various correspon- 
dences here. 

Figure 1. ( a )  A trail with intersections. Associated with each intersection is a factor of 
ee; ( b )  the corresponding silhouette. 

2.2. Silhouettes [23, 311 

Silhouettes, on the other hand, are the shadows of the trails and are not directional. 
In other words, silhouettes are an equivalence class obtained from trails when the 
chronological order of the building bonds are ignored. Thus the mapping from trails 
to silhouettes is a homomorphism or many-to-one as shown in figures 1 and 2 (i.e. 
each silhouette is counted once, independent of how many trail configurations have 
this shadow). Further field-theoretical expositions may be found in [23]. 

2.3. Exact enumeration 

The model (trails or silhouettes) consists of I bonds of fixed length, thus connecting 
I + 1 monomeric units (with overlaps at intersections) on a face-centred cubic lattice 
which has a coordination number q = 12. The lattice is described by a simple cubic 
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w 
( b )  

Figure 2. ( a )  The two trails that have the same silhouette; ( b )  a topologically non-trivial 
silhouette that has many trails. 

lattice with primitive vectors [32] 

and thus each bond is of length unity in units of 1611 = 
The enumeration is performed with the first monomeric site fixed at the origin and 

the first link fixed in the u1 direction. By carefully considering symmetry factors, there 
are only four sets of distinct configurations: 

= 1631. 

(i) a set of one group of configurations (second link along 6,); 
(ii) a set of two groups with the same type of configurations (second link along 

(iii) a set of four groups with the same type of configurations (second link along 
&) and 

(iv) another set of four groups with the same type of configurations (second link 
along -2, + (i2). 

To save computer time, we enumerate only these four distinct sets from which the 
total number of configurations can easily be obtained. We shall study the following 
three main properties of physical importance: 

( a )  the total number of walks (trails or silhouettes) of length 1 and I intersections, 

( b )  the distribution function, U,( e) ,  and 
(c)  the mean square end-to-end distance, ( r : (  e)), where r is the end-to-end distance. 
Thus, we define [7, 8, 22, 241 

$2 - $3);  

41, 0; 

4s 1 )  = c C(1, 1, r )  (2a) 
r 

d(Z, Z)=c r2C(1, I ,  r ) .  
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The partition function and the average square end-to-end distance on a lattice are then 
defined respectively as 

Li,(e) = C c( l ,  I) e" 
I 2 0  

These expressions reduce in the large-1 limit to [33, 341 

lim u,(e)~r(e)IY(e)-ICLf(e) 
I - C S  

(3) 

lim(r?(O))+ 1-U2 B(e)12v (e '  ( 6 )  

where we have included the argument 8 to show explicitly any possible temperature 
dependence of the various physical quantities. Amplitudes r( 8) and B( 8) and the 
growth parameter p (  8) are non-universal quantities. The critical exponents y (  8) and 
v(0) are universal and are expected to assume only three possible values: 

( a )  v = V S ~ W ,  y = ?sAW for 8 < 8, in swollen phase; 
( b )  v = v,, y = yt at the tricritical point 8 = et; 
( c )  v = l / d ,  y = yc in the dense phase 8 > 

where d is the dimension of the lattice. 
As mentioned in the introduction, trails and silhouettes interpolate between R W  

and SAW and are thus expected to have some of the virtues and defects of R W  and 
SAW. Another interesting question to ask, then, is: do trails and silhouettes have the 
infinite memory that SAW have as a result of the excluded volume constraint? This 
infinite memory raises the important question that if we fix the initial step (along aI , 
say) will the walks remember the direction of this first step as the length of walks tends 
to infinity [35-37]? This is the so-called persistency of trails and silhouettes and will 
also be addressed below. 

3. Results from exact enumeration: trails 

Tables 1 and 2 present c(1, I )  and d(1, I )  respectively for the trails up to I = 10 for 
I = 0-5. In any exact enumeration involving thousands of graphs, strong evidence 

Table 1. Face-centred cube: trail. The coefficients hc ( I ,  I). 

1 1 = 0  I = 1  
~ ~ ~~ 

1 = 2  I = 3  1 = 4  I = 5  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
11 

117 
1225 

12711 
131 143 

1 347 679 
13 808 087 

141 147 827 
1440 160797 

4 
102 

1748 
25 366 

336 800 
4 236 032 

51 367 620 
606 733 924 

36 
1476 

34 122 680 
611 152 31 064 176 

9 530 578 828 552 20 136 
136 495 818 16 900 552 888 352 7 848 
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Table 2. Face-centred cube: trail. The coefficients A d ( / ,  I) .  

1 
~~ 

I = o  I = 1  1 = 2  1 = 3  I = 4  I = 5  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
24 

409 0 
6 012 80 

81 315 3 064 36 
1 042 564 72 792 2 016 

12 878 367 1 382 636 68 146 512 
154 777 460 23 024 640 1718 152 42 192 176 

1821449227 35 1 548 796 35 895 586 1651 584 25 976 
21081182692 5047 104544 660 135 128 45982256 1492368 8 464 

must be adduced that no configurations have been duplicated or omitted. In order to 
do so, we have checked our numbers corresponding to I = 0 columns against inde- 
pendent existing literature for SAW [7,34]. We also note that intersection occurs only 
for lengths of more than three, as can easily be verified. For 1 = 3, the d(1, I)  value 
with I = 1 is exactly zero because in this case we have only rings and the end-to-end 
distance is exactly zero. To further check that we have the symmetry factors properly 
accounted for (see § 2.3) we have enumerated by brute force up to a chain length of 
9 and checked against the figures obtained by taking the symmetry factors into account. 
Exact agreement is obtained in each case. 

Analysis of the data proceeds in three stages: 
( i )  specific heat calculations to locate the tricritical point; 
(ii) Dlog Pad6 extrapolation to extract the critical exponents in large 1 limit; 
( i i i )  persistency study to see the effect of fixing the initial step. 

3.1. Specific heat 

The ‘specific heat’ per unit link is defined as? 

= ( ~ ~ ( e ) ) - ( z ( e ) ) ~ .  (7) 
This is a measure of relative fluctuations in the number of intersections. It was suggested 
in [8] (on the 0 point) that the form of the specific heat graphs may be a revealing 
indicator of the thermodynamical behaviour of a system as the path length 1 + ~ .  
Figure 3 shows the specific heat graphs for various path lengths. It is obvious from 
the plots that, as the path length increases, the specific heat becomes more sharply 
peaked. This observation is supported by earlier studies in the 2~ Ising model [38] 
and Monte Carlo studies [39]. In the former, it is seen that a similar trend in the 
specific heat leads to a divergence in the infinite limit, while in the latter the trend 

+Note that the usual definition of specific heat per unit link is just k B 8 ’ h , ( B ) .  We shall follow [8] and 
hereafter refer to h , ( 8 )  as the specific heat per unit link. This also explains the non-vanishing ‘specific heats’ 
at e = 0. 
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I / I l l  1 / 1 1  I l l 1  1 / 1 1  

0 125 

0 100 

0 075 
- 
E 
e- 

o 050 

0 025 

0 

\ \\\ \ i 

e 
Figure 3. Specific heat plots of the trail problem for l =  5-10: 0 I = 5 ;  0 I = 6 ;  + l = 7;  V 
r = 8 ;  o 1 = 9 ;  A !=io.  

established by short chains is seen to persist to long path lengths. Since no singular 
point is expected, the value of 0 at which h,( e)  diverges is a signature of the tricritical 
point (confirmation of this claim is the approximate renormalisation group calculations 
of Burch and Moore [40]). The values of 6 corresponding to the maxima of h l ( 8 ) ,  
Omax,  do not fall on the same point but rather show a regular shift towards lower f3 as 
a function of 1. Figure 4 is a plot of the values of 8 corresponding to the specific heat 
maxima against the inverse path length. We linearly extrapolated this to 1/ 1 = 0 or 
I + m to locate the tricritical point [22,24]. The linearly extrapolated value is 

e, = 1.20 ri: 0.05. 

3.2. Dlog Pad6 analysis [41, 421 

The Pade approximant method is particularly useful in representing integral functions 
whose only singularities are poles (i.e. meromorphic functions). A careful study of 
the functional forms of the large-1 limit of the expressions for VI( e)  and ( r : (  6 ) )  reveals 
that, in the process of computing the critical exponents, the quantity of interest (for 
example, equations (5) and (6)) is best calculated via the logarithmic derivatives 



as x + x,, where g(x) is now meromorphic, has simple poles and the critical exponents 
are just the residues. This is the so-called Dlog Pad6 approximation method. We 
apply this to the series in ( 5 ) .  In table 3 values of y and p are presented for various 
temperatures in the vicinity of the predicted tricritical point. The exponent v is similarly 
obtained from the ( r : (  e)) series ( 6 )  and is tabulated in table 4. The results, at the best 
estimate of the tricritical temperature of 8, = 1.20, are 

pt=  13.7*0.1 

yt = 0.38 f 0.03 

v, = 0.5 1 * 0.04 

Table 3. The exponent y (and the growth parameter p )  in the vicinity of 8, of the 
face-centred cubic lattice. x are defective poles. 

[ L / M ]  I = 1.0 I = 1.1 I = 1.2 I = 1.3 I = 1.4 I = 1.5 

[3/31 0.798 

[3/41 0.718 

[4/31 0.749 

[4/41 0.357 

[4/51 0.461 

[5/41 0.465 

(12.354) 

(12.522) 

(12.466) 

(13.101) 

(12.926) 

(12.920) 

0.753 
(12.640) 

0.671 
(12.827) 

0.700 
(12.770) 

X 

( X I  

0.408 
(13.315) 

0.428 
(13.279) 

0.704 
(12.966) 

0.626 
(13.159) 

0.650 
( 13.107) 

0.752 
(12.551) 

0.360 
(13.739) 

0.407 
(13.637) 

0.646 
(13.345) 

0.583 
(13.518) 

0.600 
(13.478) 

0.686 
(13.173) 

0.318 
( 14.200) 

0.403 
(13.985) 

0.582 0.509 
(13.788) (14.311) 

0.544 0.509 
(13.903) (14.312) 

0.551 0.509 
(13.884) (14.313) 

0.593 0.509 
(13.745) (14.311) 

0.282 X 

(14.698) ( x )  
0.407 0.413 

(14.317) (14.651) 
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Table 4. The exponent Y (and the critical coupling p = 1) in the vicinity of et of the 
face-centred cubic lattice. x are defective poles. 

[ L / M ]  I = 1 . 0  I = 1.1 I = 1.2 I = 1.3 I = 1.3 I = 1.5 

[3/3] 0.254 0.240 0.232 0.230 0.236 0.254 

[3/4] 0.406 0.396 0.386 0.375 0.364 0.349 

[4/3] 0.499 0.488 0.473 0.450 0.419 0.379 

[4/4] 0.699 0.822 X X X X 

[4/5] 0.485 0.484 0.482 0.478 0.472 0.464 

[5/4] 0.539 0.544 0.549 0.555 0.559 0.562 

(1.038) (1.037) (1.034) (1.028) (1.020) (1.009) 

(0.998) (0.996) (0.993) (0.990) (0.987) (0.984) 

(0.981) (0.978) (0.976) (0.976) (0.977) (0.979) 

(0.952) (0.935) ( x )  ( x )  ( X I  ( X I  

(0.981) (0.977) (0.973) (0.968) (0.964) (0.960) 

(0.973) (0.968) (0.962) (0.957) (0.951) (0.946) 

in agreement with [22]. It is to be emphasised that heavier weights are given to the 
highest Pad6 approximants and the errors are set by these approximants. The results 
should be compared with those of the 0 point ( y e  = 1 ,  ve = f) [8, 10,20,21]. We note 
that yt is substantially smaller than unity, reflecting deviations from Gaussian behaviour 
and indicating that trails at tricriticality belong to a universality class different from 
that of SAW. 

3.3. Persistency 

To quantify persistency, we shall investigate whether there is any relation governing 
this behaviour at constant fugacities (f = e") of zero and unity [37]. Since it is believed 
that in general all critical exponents can be related to two basic ones, say v and y, we 
further ask whether this relation can be expressed in terms of these characteristic 
critical exponents of the model [ 6 , 3 6 ] .  Figure 5 shows how the end-to-end distance 
along the direction of U ,  for a given configuration is measured. The m moment of the 

J" 
Figure 5. A trail with the initial step fixed along a , .  The displacement along 4, is measured 
to calculate the persistency. 
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Tables. Face-centred cube: trail. ( U )  al(/ ,  I )  and ( ( a , ) ) ;  ( 6 )  a ; ( (  I )  and ( ( a ; ) ) ;  (c )  a;(/ ,  I )  
and (ia?)); ( d )  @ : ( I ,  I )  and (iay)). 

0.100 OOEl 
0.120OOE2 
0.133 00E3 
0.142 60E4 
0.150 23E5 
0.156 62E6 
0.162 18E7 
0.167 14E8 
0.171 65E9 

0.000 OOEO 
0.340 00E2 
0.942 00E3 
0.17072E5 
0.258 06E6 
0.353 35E7 
0.455 01E8 

0.100 OOEl 
0.10909E1 
0.1 13 68E1 
0.116 41 El  

0.240 00E2 0.118 19E1 
0.884 00E3 0.11943El 
0.218 62E5 0.212 00E3 0.120 34E1 
0.426 59E6 0.157 12E5 0.11200E3 0.121 05E1 
0.715 05E7 0.498 56E6 0.112 24E5 0.121 61E1 

0.100 OOE 1 
0.109 09E1 
0.109 92E1 
0.11002E1 
0.11031El 
0.110 50E1 
0.11062El 
0.11072El 
0.11080El 

0.100 OOEl 
0.240 OOEZ 
0.421 00E3 
0.634 45E4 
0.875 46E5 
0.1 14 06E7 
0.142 75E8 
0.173 44E9 
0.205 97E10 

0.100 OOEl 
0.218 18E1 

0.000 OOEO 0.359 83E1 
0.355 OOEZ 0.517 92E1 
0.177 ME4 0.150OOE2 0.688 74E1 
0.489 68E5 0.146 00E4 0.869 74E1 
0.102 87E7 0.532 57E5 0.149 00E3 0.105 92E2 
0.184 13E8 0.137 62E7 0.22090E5 0.640 00E2 0.125 61E2 
0.2968 84E9 0.293 24E8 0.108 15E7 0.141 88E5 0.145 93E2 

0.100OOEl 
0.218 18E1 
0.347 93E1 
0.480 78E1 
0.616 29E1 
0.753 89E1 
0.893 22E1 
0.103 42E2 
0.117 65E2 

0.100 OOEl 
0.645 OOEZ 
0.187 30E4 
0.402 29E5 
0.731 22E6 
0.1 19 42E8 
0.181 02E9 
0.259 70E10 
0.357 19Ell  

0.1 00 OOE 1 
0.586 36E1 

0.000 OOEO 0.16009E2 
0.358 75E2 0.328 40E2 
0.451 20E4 0.127 50E2 0.575 27E2 
0.204 20E6 0.349 40E4 0.910 61E2 
0.608 30E7 0.200 40E6 0.133 25E3 0.134 32E3 
0.143 16E9 0.707 77E7 0.48494E5 0.52000E2 0.188 08E3 
0.289 28E10 0.193 41E9 0.36662E7 0.275 89E5 0.253 06E3 

0.100 OOEl 
0.586 36E1 
0.154 79E2 
0.303 43E2 
0.507 59E2 
0.769 04E2 
0.108 94E3 
0.147 02E3 
0.191 28E3 

0.100 OOEl 
0.198 37E3 
0.100 66E5 
0.314 72E6 
0.761 41E7 
0.156 82E9 
0.289 O2ElO 
0.490 99E11 
0.783 71E12 

0.100 OOEl 
0.180 34E2 
0.860 34E2 0.000 OOEO 

0.359 69E2 0.25691E3 
0.599 02E3 0.135 79E5 0.121 87E2 

0.105 56E7 0.101 45E5 0.119 58E4 
0.21446E4 0.45447E8 0.979 45E6 0.129 31E3 

0.141 87E10 0.485 90E8 0.136 12E6 0.49000E2 0.355 58E4 
0.36093E11 0.171 85E10 0.163 04E8 0.682 44E5 0.555 24E4 

0.100 OOEl 
0.18034E2 
0.83 1 90E2 
0.237 19E3 
0.526 23E3 
0.999 37E3 
0.170 81E4 
0.270 60E4 
0.404 91 E4 
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Figure 6. ( a )  Plots of the odd moments of the persistency along o, for the trail problem 
with f= 1: 0 k = 0; 0 k = 1; + k = 2; V k = 3. ( 6 )  The corresponding plots with f= 0. 

persistency in the a, direction is then defined through the analogue of (2b): 

~ ~ ( I , I ) = C ~ ; ” C ( I , I , ~ ) .  (9a)  
r 

The average odd moments of the persistency induced by fixing the direction of the 
first step is thus defined as 

In table 5 we tabulate the first four odd moments for trails. As is very obvious in 
figure 6 ( a )  (fugacity f =  1) and figure 6 ( b )  (fugacity f =  0), these moments seem to 
obey power laws of the form [43, 441 

where C is a constant, v = g ,  m22.0  in the Malakis-type trails of figure 6 ( a )  and 
Y = vSAW = 3,  m = 2.0 in the saw-type trails of figure 6( b) .  It is interesting to note that 
the results of the Malakis-type trails support the belief that the latter belong to the 
universality class of SAW. A similar dependence in two dimensions (with the exception 
of a log factor which is special to two dimensions) has been observed in [37] where 
the enumeration is performed on a square lattice and a scaling argument is given in 
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its support. It is also to be noted that the reduced moments MZk" = ( (a~k+' ) / (a l )2k+1)  a 
1 where the equality sign holds for a path length of one and the inequality gets larger 
as the path length increases. It is also seen that the reduced moments increase with 
the fugacity factor, in accord with the observation of [8]. 

4. Results from exact enumeration: silhouettes 

Tables 6 and 7 present c(l ,  I) and d(Z, I) respectively for the silhouettes up to 1 = 10 
for Z = 0-5. It is observed that the first column of the table (I = 0) is exactly that of 
the corresponding column in the trail table and the second ( I  = 1) is half that of the 
corresponding column in the trail table. This is as it should be from the definition 
(see figures 1 and 2 ) .  There seems to be no simple relationship relating the number 
of trails corresponding to a silhouette configuration for I B 2 .  

Table 6. Face-centred cube: silhouette. The coefficients & c ( / ,  I). 

I I = o  I = 1  I = 2  I = 3  1 = 4  I = 5  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
11 

117 
1225 

12711 
131 143 

1 347 679 
13 808 087 

141 147 827 
1 440 160 797 

2 
51 

874 6 
12 683 263 

168 400 6 377 42 
2 118016 118 170 1 go@ 4 

25 683 810 1890 138f 52 854 413 
303 366 962 27 610 184 1134352 18236 5* 

Table 7. Face-centred cube: silhouette. The coefficients A d ( [ ,  I). 

I I = O  I = 1  I = 2  1 = 3  1 = 4  I = 5  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
24 

409 
6 012 

81 315 
1 042 564 

12 878 367 
154 777 460 

1 821 449 227 
21 081 182 692 

0 
40 

1532 6 
36 396 336 

691 318 11 821 32 
11 512320 310 584 2 596 4 

175 774 398 6 717 797 102 922 553 
2523552272 127 086 884 2 955 136 30 932 56& 

4.1. Specific heat 

The specific heat plots are depicted in figure 7.  Again we observe a regular shift of 
the peaks as the path length increases. Figure 8 is a plot of Om,, against inverse path 
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length, We employ a similar extrapolation described above to locate the tricritical 
point at l +  cc. The linearly extrapolated value is 

e, = 2.30 * 0.05. 

e 
Figure 7. Specific heat plots of the silhouette problem for 1 = 5-10: 0 1 = 5 ;  U 1 = 6 ;  -t 
1 = 7 ;  V 1 = 8 ;  0 1 = 9 ;  A / = l o .  

4.2. Dlog Pad6 analysis 

The results from the Dlog Pad6 analysis for p, y and v are presented in tables 8 and 
9 respectively. The results, at the best estimate of the tricritical temperature of 8, = 2.30, 
are 

p1 = 13.8 * 0.2 
yt = 0.61 f 0.03 
v, = 0.45 * 0.03 

consistent with the results of [29,45]. We emphasise again that heavier weights have 
been given to the highest Pad6 approximants and the errors are bounded by these 
approximants. A few remarks about these tricritical exponents are in order: 

(i) the exponents yr and vl are different from those of trails so we conclude that 
trails and silhouettes do not belong to the same universality class; 

(ii) these exponents are also different from the usual 0 point exponents of yo = 1,  

(iii) these results are in reasonable agreement with the predictions of the & 
U @ = $ ,  

expansion in E = d - 4 dimensions ( y, = 0.8, v, = 0.43) [23,29]. 
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c / 

2 . 5  v t 1 
2 . 0 1  I 1 I I I ' I 1 I I I I I I 1 I I I 

0 0.1 0 . 2  0.3 
111 

Figure 8. Plot of specific heat maxima, O m a x ,  against 1/1 for the silhouette problem: A are 
data points; the line is the linear fit. 

Table 8. The exponent y (and the growth parameter p )  in the vicinity of 8, of the 
face-centred cubic lattice. x are defective poles. 

[LIM] e=2.2  e = 2.3 e = 2.4 e = 2.5 e = 2.6 e = 2.7 

[3/31 0.708 0.661 0.607 0.547 0.477 0.396 
(13.386) (13.764) (14.196) (14.697) (15.291) (16.011) 

(13.296) (13.624) (13.976) (14.355) (14.760) (15.193) 

(13.276) (13.583) (13.880) (14.139) (14.065) ( x )  

(13.343) (13.692) (14.072) (14.486) (14.936) (15.424) 

(13.509) (13.905) (14.336) (14.804) (15.311) (15.858) 

(13.425) (13.791) (14.187) (14.615) (15.077) (15.574) 

13/41 0.739 0.706 0.672 0.640 0.609 0.578 

[4/31 0.746 0.720 0.702 0.707 0.809 X 

[4/41 0.722 0.683 0.643 0.602 0.562 0.522 

[4/51 0.640 0.586 0.534 0.485 0.458 0.395 

15/41 0.688 0.644 0.602 0.561 0.521 0.483 

4.3. Persistency 

The odd moments of the persistency are tabulated in table 10 and displayed in figure 
9 for the Malakis-type silhouette (f = 1). The corresponding sAw-type silhouette 
is exactly the same as that of figure 6(b) since trails and silhouettes are the same at 
f = 0 (see 9 2). It is obvious that the behaviour of the persistency is similar to that of 
trails, except that s ((a:k+')),ilhouette. Though the difference is not quite 
appreciable up to the maximum path length we consider here, it is evident that the 
'discrepancy' gets larger as the path length increases. This is expected and may be 
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Table 9. The exponent Y (and the critical coupling fi  = 1 )  in the vicinity of et of the 
face-centred cubic lattice. x are defective poles. 

[ L I M ]  0=2.2 6 = 2.3 6 = 2.4 6 = 2.5 e = 2.6 6 = 2.7 
~ 

[3131 0.259 

[3/41 0.272 
(1.021) 

[4/31 0.272 
(1.021) 

[4/41 0.258 
(1.025) 

[4/51 0.413 
(0.990) 

[SI41 0.499 
(0.976) 

(1.025) 
0.272 

(1.017) 
0.250 

(1.023) 
0.251 

0.271 
(1.017) 
0.404 

(0.988) 
0.493 

(0.974) 

(1.022) 

0.293 
(1.007) 
0.222 

( 1.024) 
0.234 

(1.021) 
0.284 

(1.001) 
0.395 

(0.985) 
0.481 

(0.972) 

0.318 
(0.997) 
0.184 

(1.028) 
0.225 

(1.019) 
0.299 

(1.002) 
0.388 

(0.983) 
0.464 

(0.971) 

0.348 
(0.986) 
X 

( X I  

0.227 
(1.015) 
0.315 

(0.995) 
0.381 

(0.981) 
0.440 

(0.971) 

0.377 
(0.975) 
X 

( X I  

0.238 
(1.008) 
0.331 

(0.987) 
0.377 

(0.977) 
0.415 

(0.972) 

explained as follows. For a fixed chain length, the chain can be quite ‘open’ with few 
intersections or can be quite ‘collapse’ with many intersections. If we recall that a 
silhouette with many intersections can have multiple trails, then we see that these 
‘collapse’ (and thus smaller l a ^ , l )  configurations are more heavily weighted (by the 
multiplicity) in the trail configurations than in the silhouette configurations. For longer 
chain lengths, this happens even more often and thus the discrepancy becomes larger. 
It is rather unfortunate that we can make no quantitative deduction about this ratio 
from the short chains we have generated here. 

5. Conclusions 

In the present paper, we have tabulated the face-centred cubic lattice series for the 
number of configurations and end-to-end distance for trails and silhouettes according 
to their chain lengths and number of intersections. We have also computed the ‘specific 
heat’ (mean-square fluctuations in the number of intersections) and shown the existence 
of tricritical points as the fugacity for intersection is increased. The maxima in the 
specific heat exhibit a regular trend towards lower values of 6 as the order 1 in the 
series increases. We perform a linear regression to extrapolate the value of et and 
deduce the best bounds on the tricritical exponents for both the trails and silhouettes. 

Our results, though extracted from series of short path length ( I  = lo), are quite 
stable due to the fact that the embedding lattice is close-packed (face-centred cubic 
lattice). The tricritical exponents obtained show that the behaviour of trails at tricritical- 
ity is non-Gaussian and that the tricritical point is distinct from the usual 0 point. 
Despite the supporting evidence in favour of a new tricritical behaviour for trails, this 
fact does not, ipso facto, rule out other possibilities like a fast crossover with rapid 
variation in various quantities (but no singularities) or a tricritical behaviour analogous 
to standard tricritical polymers. We hope that the open questions will stimulate a more 
accurate determination of the tricritical properties for this special point which is 
inaccessible by renormalisation group and is not described by a perturbative fixed 
point in 4 - e dimensions. 
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Table 10. Face-centred cube: silhouette. ( a )  a, ( l ,  I )  and ( (aI) ) ;  ( b )  a;(l, I) and ( ( a ; ) ) ;  ( c )  
a?( / ,  I )  and ( ( a ; ) ) ;  ( d )  a:( [ ,  I )  and ( (ay)) .  

1 0.100OOEl 
2 0.12000E2 
3 0.13300E3 
4 0.14260E4 
5 0.15023E5 
6 0.15662E6 
7 0.16218E7 
8 0.167 14E8 
9 0.17165E9 

0.100OOEl 0.100OOEl 
0.109 09E1 0.10909E1 

0.000 OOEO 0.113 68E1 0.111 76E1 
0.17000E2 0.11641E1 0.11309El 
0.471 00E3 0.400OOEl 0.118 19E1 0.11403E1 
0.853 60E4 0.147 33E3 0.11943El 0.11472E1 
0.129 03E6 0.376 13E4 0.132 50E2 0.12034El 0.115 25E1 
0.176 67E7 0.763 43E5 0.976 92E3 0.254 55E1 0.121 05E1 0.115 65E1 
0.22751E8 0.132 51E7 0.311 48E5 0.23602E3 0.121 61E1 0.11599E1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
- 

0.100OOEl 
0.240 00E2 
0.421 00E3 
0.634 45E4 
0.875 46E5 
0.1 14 06E7 
0.142 75E8 
0.173 44E9 
0.205 97E10 

0.100OOEl 
0.218 18E1 

0.000 OOEO 0.359 83E1 
0.177 50E2 0.517 92E1 
0.885 00E3 0.250 OOEl 0.688 74E1 
0.244 84E5 0.243 33E3 0.869 74E1 
0.51437E6 0.90098E4 0.931 25E1 0.105 92E2 
0.92064E7 0.239 03E6 0.137 6684 0.145 45E1 0.125 61E2 
0.148 42E9 0.524 66E7 0.673 06E5 0.310 75E3 0.145 93E2 

0.1 00 OOE 1 
0.218 18E1 
0.353 78E1 
0.498 61E1 
0.650 68E1 
0.808 76E1 
0.971 98E1 
0.1 13 98E2 
0.131 15E2 

1 I = O  I = 1  1 = 2  I = 3  1 = 4  f = o  f = 1  

0.100OOEl 0.100OOEl 0.100OOEl 
0.645 00E2 0.586 36E1 0.586 36E1 
0.187 30E4 0.000 OOEO 0.16009E2 0.157 39E2 
0.402 29E5 0.179 37E2 0.328 40E2 0.315 41E2 
0.731 22E6 0.225 60E4 0.212 50E1 0.575 27E2 0.539 68E2 
0.119 42E8 0.102 10E6 0.582 33E3 0.910 61E2 0.835 92E2 
0.181 02E9 0.304 15E7 0.335 37E5 0.832 81E1 0.134 32E3 0.120 92E3 
0.259 70E10 0.715 81E8 0.120 35E7 0.302 72E4 0.181 81E1 0.188 08E3 0.166 38E3 
0.357 19Ell  0.14464E10 0.33661E8 0.228 12E6 0.617 15E3 0.253 06E3 0.22041E3 

a : ( / ,  I )  ( a : ( / ,  1 ) )  

1 I = O  I = 1  I = 2  1 = 3  I = 4  f = o  f = 1  

0.100 OOEl 
0.198 37E3 
0.10066E5 
0.314 72E6 
0.761 41E7 
0.156 82E9 
0.289 O2ElO 
0.490 99E 1 1 
0.783 71E12 

0.100 OOEl 
0.180 34E2 

0.000 OOEO 0.860 34E2 
0.179 84E2 0.256 91 E3 
0.678 94E4 0.203 12E1 0.599 02E3 
0.527 78E6 0.169 O8E4 0.119 58E4 
0.227 24E8 0.163 38E6 0.808 20E1 0.214 46E4 
0.709 36E9 0.816 92E7 0.850 3784 0.1 11 36E1 0.355 58E4 
0.18047E11 0.293 57E9 0.101 57E7 0.154 16E4 0.555 24E4 

0.100 OOEl 
0.18035E2 
0.845 88E2 
0.246 6683 
0.560 73E3 
0.109 20E4 
0.191 34E4 
0.31046E4 
0.475 2284 
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Figure 9. Plots of the odd moments of the persistency along (I, for the silhouette problem 
w i t h f = l :  0 k = O ; O  k = l ;  + k = 2 ;  V k = 3 .  

The silhouette results, however, support the renormalisation group & expansion 
predictions extrapolated to E = 1 .  Of particular interest are the confirmation of the 
non-Gaussian behaviour at the tricritical point ( vt < and yt < 1) and the confirmation 
that this tricritical point is distinct from the usual 0 point [7, 8, 19-21]. 

The tricritical exponents of trails and silhouettes also show that they do not share 
the same tricritical exponents, indicating that they belong to different universality 
classes. However, longer series or alternative methods like Monte Carlo or finite-size 
scaling will be necessary to extract more precise exponents to further confirm these 
claims [46]. 

The interesting property of persistency arising from fixing the initial step in a certain 
fixed direction is also studied. The results show that the persistency may be quantified 
as a power law in terms of the path length, /, and the critical exponent, v. As a 
by-product, we have also indirectly shown that trails and silhouettes at T = CT) (Malakis 
type) belong to the SAW universality class. 
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